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Abstract 

Starting from the equations of motion of particles interacting with both el~tromagnetic 
and gravitational fields, the (passive) gravitational mass (?'fR) aad the inertial mass 
(M~) of the total system of interacting charges is calculated. It is found that in both 
Einstein's General Relativity and the scalar-tensor gravitational theory of Brans and 
Dicke, M I and Mj are both-equal to the Special Relativistic energy of the system of 
interacting charged particles. Therefore, both theories are compatible with the high 
accuracy measurements of the MJM, ratio of laboratory objects. 

I. Introduction 

In previous papers (Nordtvedt, 1968, 1969) the conditions on gravitational 
theories were obtained which result in massive bodies consisting ofgravita- 
tionally interacting particles falling in an external gravitational field at the 
same rate as test bodies. This has been done by calculating the (passive) 
gravitational to inertial mass ration (M,/Mi)  of  the massive bodies. Since 
these systems have been totally gravitational, gravitational theories only 
have been studied to obtain our results. 

The experimental situation is presently as follows: there are no high- 
precision measurements confirming t ha t  massive gravitational systems 
(planets, stars) have M I / M  I ratios which equal one. But for small laboratory 
objects whose internal interaction energy is electrical (and nuclear) the 
experiments o f  Eotvos (1922) and Dicke and collaborators (Roll, et al., 
1964) have established that M J M I  is the same to a part in 10 ti for different 
materials. 

In this paper we wiil incorporate electromagnetic theory into the gravita- 
tional theories, so that the gravitational and inei'tial mass of  a collection of  
interacting charges can be obtained. The approach to be used will be to 
obtain the total equation o f  motion of  the charges when placed in an external 

t This work was supported by National Aeronautics and Space Administration grant 
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9 133 



GRAVITATIONAL MASS OF BODIES OF ELECTRICAL CHARGES 135 

Equation (2.4) leads to a differential equation for ~; 

dt 
V2~ = 4~p~goog.  + ~ - (1 + ?)g. Vq~ (2.5) 

where g .  is the space components ofg~;  

S -  -- - 0 + 21'~) 

and 8 is the gravitational field; 
g = v ~  

p is the invariant charge density which for a charge of strength e fulfills 

f p(x) ~(-g)  ~dJ  x = e (2.6) 

(g is the determinant of the space-time metric). 
The equations of motion of the particles are obtained by making the 

usual variation of the action integral (2. l). The result is 

\ d 
r2x|,./= V~ + (1' + �89 V~ - (21' + I) u, ~" (~v) dt v ' ( !  (2.7) 

+ ~v~ - ~t) 

Needing the electrostatic field in (2.7) we solve (2.5) obtaining a solution 
for the electrostatic potential at r due to a charge ej at rj; 

9~(r)= ej ( 1 -  12--Y[~(r)+ ~(rj)])+~,.t(r) (2.8) 
I r -  r,I 

where q~,.t is the retardation correction to the electrostatic field; 

/velocity ) 
e~ (r - rj___ ) ,  aj + ! dependent (2.9) 

,~,,,(r) = 2 I r -  r~l \term 

with aj being the acceleration of the source charge ej. The vector potential 
needed in (2.7) can be used in the fiat space approximation 

ejvj 
X = I t -  rjI (2.1o) 

Also in (2.7) we expand 

d (q~r) v) = ~(r) a,., + v.gv (2.11) 

an. is the internal acceleration of the charges produced by the interaction 
with the other charges. 

All the terms in (2.7) can now be grouped into those proportional to the 
externalar162 of the collection of charged particles in a gravitational 
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field and those terms proportional to the externalgraritationatfield. For a 
colIec6on ofcharged particles (m,,e,) in the presence of an external gravita- 
tional field (2.7) then yields 

! '~" ele~ ] 

"I'[~ m'v"'" v' + ~ ~ e'r'''.'' ru ] .,~ 

= mt+�89 ~t: 4 g + Y  ~m'vtz+:2~-j~j rt, j 

e,e, 1 
--(2) '+ 1' ~mtvt.gv,+ 1 ~ r~ ru.grt,j (2.12, 

where we have summed the equation of motion of the particles ~eighted by 
their zeroth-order energy, m,. 

For a system of interacting charges in internal equilibrium (2.12) takes a 
simple and significant form. For then we can apply some virial conditions: 

i ~ ~e! (ro)=(r,j) ~ = 0 (2. ! 3)  m,(v,)=(v,)# + :2 r,~ 

1 '~, el ej = 0 (2.13a) 
m,,,,' + ,'7' r .  

where ,, and ~ represent any two components of the vectors. Using (2.13 
and 2.13a) in (2.12) we finally get 

with 
"" ~,Ml! =g  

1:2 ~e~e~ru M, = M~ = ,~ mj + �89 ~ m~ v / +  

This result is independent of the particular value of the dimensionless 
parameter y in the metric (2.3), as 7, multiplies factors which vanish due to 
the virial conditions. 

The inertial mass of the assembly of interacting charges is adjusted to 
take account of the internal kinetic and electrostatic energy contributions 
to the total energy of the system by means of the following properties of 
the equations of motion: 

(!) The kinetic energy comes from the Special Relativistic energy versus 
velocity relationship. 
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g2) The electrostatic energy comes from the retardation corrections to 
the electrostatic field and the inductive electrical field which comes from the 
time rate of change of the vector potential. 

"l'he gravitational mass of the assembly of interacting charges is adjusted 
by the internal kinetic and electrostatic energy contributions due to the 
following properties of the equations of motion: 

(!) The kinetic energy comes from the velocity dependence ofthe strength 
of  a particle's couplit,g to a gravitational field. 

12) The electrostatic energy results from the curved Riemannian metric 
altering the Maxwell field equations and thereby the electric fields by which 
the charges interact ~ith each other. 

3. Quantum Mechanical Systems 

It is evident that laboratory objects for which the M,/MI ratio has been 
measured are quantum mechanical, both at the solid state and atomic level. 
F.quation {2.12) could be interpreted quantum mechanically by having the 
quantities ,If.and Mi considered as operators whose expectation value is to 
be taken. Then using quantum mechanical analogs of the virial conditions 
{15 and 15a) our result becomes 

<Ms) --- (Mr) = Y_ mj -I < ( r +  v))  c2 (3.1) 

However, this result (3.1) for the inertial mass can be obta:~ed more 
convincingly by directly obtaining the Hamiltonian for intcrac ~= =harges 
and identifying the system's inertial mass. 

The starting point is the Breit Hamiltonian (Bethe & Salpeter, 1957) for 
two interacting charges (consider for simplicity identical masses). We will 
neglect terms in the Breit Hamiltonian which come from the intrinsic spin 
degrees of freedom of Dirac particles and keep only the Special Relativistic 
corrections to the Hamiltonian. Physically these corrections origin:ite from 
the relativistic kinetic energy expression and the retardation of the Coulomb 
interaction. 

p2 2 pt 4 pa 4 + el e2 + V,(rt) + V.(r,) 
H = ~ a , ' ~ a a  8ml 3 8m2 3 rlz 

lete2 I i rt2,(ri2.Pl)P2~ 
r,2 mtm: ~ p''p2 + ~2 / (3.2) 

Ya(r) are external potentials in which the two-particle system is placed. 
The change of variables are made: 

It = (mr rl + m, r2)/ M (3.3) 
r = rt - r2 (3.3a) 

P = Mk  (3.3b) 
--mr (3.30) 
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with m =m,m~JM=m/2 and M= ml + mz = 2m. The Hamiltonian (3.2) 
then reads 

+ 

p2 et e~'~ ! [(p.p)2 elez ) 
2m?,f M~rlzl--2M-2~,' m +r~z (r'z'e)2 (3.4) 

[ 

/~ +e=ez/  p2 1)-J ele2(rl2"P)2 

Using (1.2) in a Born-Oppenheimer approximation of separation of 
internal and external dynamics, one can identify the expected value of the 
total coeff~ent o fP  ~ as l/2Mi for the system. That yields 

<(r+ v)> 
r + "b I~ (3.5) 

refers to the components ofthe vectors p anfr== along the direction of the 
external acceleration. 

In a stationary quantum state the last expectation value in (3.5) vanishes 
and our desired result is obtained. In a mixed state the last expectation value 
oscillates with frequencies given by the system's energy level differences 

, , , .  = ( E .  - E , ) l h  

and hence sla'll vanishes on a time average. 
In an appendix it is shown that the same result 

T +  V 
M==gl- -~mjq  c~ 

J 

holds for particles interacting via scalar Yukawa nuclear forces, too. The 
problem of treating realistic pseudo-scalar nuclear forces is complicated 
by the necessity of properly introducing intrinsic particle spin in a covariant 
way. We hope to address ourselves to that problem in a future paper. 

Appendix 
For particles interacting with each other via scalar Yukawa forces and 

also in an external gravitational field, the action integral for the Yukawa 
field and the particles is 

S = f ~ ( - g )  (~, ~ '  - m 2 ~2) d 4 X/Srt (A 1) 

and 
S=- f (mi+G,~)v ' [ l  - 2~b- v2(l + 2y~)]dt (A2) 

The equation of  motion of the particles which results from variation of 
(A2) is: 

dZx, 
m t - - ~  = mi g + ~ ,  vt 2 g -- (2y + 2) mi v~. gv l 

- G, V~x, )  + (2? + 2) G, ~(x,) V~'~ (A3) 
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~0~(X) is the flat-space Yukawa potential, ~(x) is the gravitational potential 
g =  V~ is the gravitational field. The field equation for the Yukawa 
potential is 

- V 2 5  + (1 + 2y~)m2 ~, - (y - l )g .  ~'~ = --47rG, pj(x)(l - (y - 1)~) - 9[ 

(A4) 
which has the solution 

[ '  - + / 
, j 

Summing (A3) over all the particles and dividing by the sum of masses 
yields the acceleration of  the system in an external gravitational field; 

= 1 + ( y +  !) '~. G , G ~ ~ ) ( I  + m x o )  (x,j)a 2 ,, x,, [ |  

G ' G ' ( l + m x o l  ) J  
IJ XIJ 

(A6) 
with 

M =  ~ m ,  
I 

which by virtue of  the virial conditions for internal equilibrium of the 
interacting nuclear p:rticles 

J = ,J + m x  ' e x P ( - m x ' ) ' x ~  ) ' X m,(v,h 2 �89 X G,G~(I ,j) t , ,  ,I 

m, v, 2 = �89 :~ G4 Gj(i + rex,j) exp ( -mxo)  
I el X l l  

yields for arbitrary value of the parameter y, 

a = g  
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